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Abstract—Diabetic retinopathy (DR) is a leading cause
of vision impairment among diabetic patients, with early
detection crucial for effective management and treatment
[1]. This paper presents a computer vision approach to
the diagnosis of diabetic retinopathy using a VGG-based
convolutional neural network (CNN) [2], [3]. Our model is
trained on a diverse dataset of fundus camera images to
classify DR into various stages of severity [4]. To address
the critical need for transparency and trust in medical
diagnostic tools, our approach incorporates the generation
of saliency maps, which highlight the specific areas within
the images that influence the model’s predictions [5], [6],
[7]. This visualization aids in demystifying the model’s
decision-making process, providing healthcare profession-
als with valuable insights into the reasoning behind the
diagnoses. The saliency overlay not only enhances the
interpretability of the automated system but also serves
to augment the diagnostic process by focusing attention
on areas of potential concern. By presenting these findings
alongside the model’s classification, our tool is designed
to support, rather than replace, the clinical judgment
of physicians. This paper demonstrates the potential of
computer vision techniques to not only automate the
detection of diabetic retinopathy but also to contribute
meaningful insights for improved patient care. Our results
affirm the efficacy and reliability of our model, promoting
its integration as a supportive tool in clinical settings.

Index Terms—Computer Vision, Diabetes, Retinopathy

I. INTRODUCTION

Diabetic retinopathy is an eye disease associated with
both Type 1 and Type 2 diabetes that causes damage
to the blood vessels in the retina [8]. Left untreated,
diabetic retinopathy can cause permanent vision loss
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[9]. The Center For Disease Control (CDC) estimates
that there are 9.6 million people in the United States
living with Diabetic Retinopathy, of whom 1.84 million
have vision-threatening diabetic retinopathy [10]. Since
diabetic retinopathy is caused by swelling and leaking
in the vasculature, which is associated with elevated
blood glucose over long periods of time, it is imperative
that the disease be caught earlier rather than later [11].
Notably, early-detection enables non-invasive treatments
involving controlling blood glucose levels, blood pres-
sure, and cholesterol levels [12]. However, late-stage
diabetic retinopathy treatments are generally more inva-
sive, including photocoagulation, steroid injections, and
vitrectomy [12]].

Diabetic retinopathy is typically divided into 5 stages:
0: No DR - no hemorrhaging, microaneurysms, or abnor-
mal vascularization occurs, 1: Mild Non-proliferative
DR - swelling in small blood vessels occurs, 2: Mod-
erate Non-proliferative DR - blood vessels become
blocked, 3: Severe Non-proliferative DR - ischemia
occurs, blot hemorrhaging occurs, and abnormal vascu-
larization may occur, and 4: Proliferative DR - new,
abnormal and fragile, blood vessels begin to grow in the
eye [13].

Our goal is to introduce a computer vision model
that aids physicians in accurately diagnosing the various
stages of diabetic retinopathy. This model aims to serve
as a critical tool, enhancing the precision of clinical as-
sessments and facilitating a more streamlined diagnostic
process. By integrating visual data analysis, the model
provides valuable support in clinical decision-making,
offering physicians insights that are essential for moni-



toring disease progression over time. Ultimately, our goal
is to equip healthcare providers with technology that not
only improves diagnostic accuracy but also contributes
to the longitudinal study of diabetic retinopathy, paving
the way for better patient outcomes.

II. BACKGROUND

Diabetic retinopathy is a progressive disease that ne-
cessitates early and accurate detection to prevent severe
vision loss. With the increasing prevalence of diabetes
worldwide, efficient and scalable diagnostic technologies
are crucial. Computer vision has emerged as a powerful
tool in this context, enabling the automated detection and
classification of diabetic retinopathy.

Computer vision has become increasingly prevalent
in medical diagnostics [14]. Specifically for diabetic
retinopathy, it typically involves the use of classifiers that
categorize a single fundus image into one of five stages
of the disease [15]. The VGG model, known for its robust
feature extraction capabilities, is particularly favored
in image recognition tasks [15], [16], [17], [18], [19],
[200, [21], [22]. It effectively identifies key indicators of
diabetic retinopathy such as microaneurysms, exudates,
hemorrhages, and abnormal vascularization [23]. Exist-
ing applications of this model have achieved accuracies
exceeding 85% in diagnosing the condition [8].

Despite these advancements, the opaque “black box”
nature of deep learning models poses a significant barrier
to their adoption in clinical settings [24]. Traditionally,
the decision-making processes of these models are not
transparent, leaving physicians without a clear under-
standing of why certain decisions were made [24]. To
overcome this challenge, researchers have developed
explainability techniques like Grad-CAM [25]. These
techniques provide visual explanations by highlighting
influential regions in the images at one of the final
layers of the network. This not only helps bridge the gap
between model decision-making and user interpretability
but also supports physicians in integrating their clinical
expertise with model suggestions for better-informed
decision-making.

III. PROBLEM FORMULATION

The goal of our project is to advance the diagnosis of
diabetic retinopathy, a leading cause of blindness among
adults worldwide, by implementing a dual-purpose com-
puter vision algorithm. This algorithm is designed not
only to improve diagnostic accuracy but also to en-
hance transparency in the diagnostic process. Current
methods for detecting and assessing diabetic retinopathy

depend heavily on the manual examination of retinal
images by skilled clinicians. These methods are often
limited by the availability of experts and can suffer from
subjective variability in diagnosis. As the prevalence of
diabetes increases globally, there is an urgent need for
a more scalable and consistent approach to diagnosing
this vision-threatening condition.

Our objectives are twofold. Firstly, we aim to accu-
rately classify the severity of diabetic retinopathy across
its spectrum, from mild to severe stages. The ability
to classify with high precision is crucial as it directly
informs treatment options and management strategies,
potentially leading to better patient outcomes. Secondly,
we seek to increase the accountability and trustworthi-
ness of Al in medical diagnostics by generating saliency
maps. These maps are intended to visually represent the
critical features within the retinal images that influence
the AI's decision-making process. By doing so, we aim
to provide clinicians and patients with clear, visual ex-
planations of the AI’s diagnoses, promoting transparency
and understanding.

In summary, our work seeks to address the significant
challenge of scaling diabetic retinopathy diagnostics
while maintaining the quality and reliability expected
in healthcare. By achieving these goals, we anticipate
that the confidence in Al-assisted diagnostics will be
significantly bolstered, leading to wider acceptance and
use of these technologies in clinical settings. This ap-
proach not only promises to enhance the capacity for
early detection and treatment of diabetic retinopathy but
also sets a precedent for the application of Al in other
areas of medical imaging and diagnosis.

IV. METHODOLOGY

The dataset we use is the Kaggle Diabetic Retinopa-
thy Detection Dataset [4]]. The dataset consists of over
35,000 high resolution retina images captured with a
fundus camera [4], [15]. All of the images are labeled
by clinicians into 5 numbered classes corresponding to
severity. The data is structured into training and testing
files as well as a file delineating training and testing
labels.

We have constructed a classifier employing the VGG-
16 architecture, which is a convolutional neural network
with 16 layers [2]. As outlined in our approach
starts with loading the VGG-16 model pre-equipped with
trained weights. Subsequently, we enable training on all
layers by unfreezing their weights. The VGG architecture
utilizes 3x3 convolutional filters and max-pooling to



pretrained=True)

"cuda:0" else "cpu"

1r=0.001)

1 BEGIN

2 // Load Pretrained Weights

3 vgg_model < load_model ("VGG1l6",

4

5 // Unfreeze all layers for training
6 FOR layer IN vgg_model.parameters ()
7 layer.requires_grad < True

8 END FOR

9

10 // Modify classifier structure

11 vgg_model.classifier[6] <4 Sequential (
12 Linear (4096, 1024),

13 RelU (),

14 Dropout (0.5),

15 Linear (1024, 1),

16 Sigmoid ()

17 )

18

19 // Set device

20 device < 1f GPU_available() then

21 vgg_model.to (device)

22

23 // Loss function

24 criterion < Cross_Entropy_Loss ()

25

26 // Use Adam Optimizer

27 optimizer <4 Adam(vgg_model.classifier.parameters(),
28 END

Fig. 1: Pseudocode for adapting a pre-trained VGG-16 model for Diabetic Retinopathy classification.

minimize the model’s complexity and the number of pa-
rameters needed. The classifier’s configuration is altered
to include a linear layer, a ReLLU activation function, a
dropout rate of 0.5 to prevent overfitting, another linear
layer, and a sigmoid activation to produce a probability
output. The model is trained using cross-entropy loss and
optimized with the Adam optimizer with a learning rate
of 0.001 [26], [27].

Following the training and optimization of the VGG-
16 model for diabetic retinopathy detection, we employ
Gradient-weighted Class Activation Mapping (Grad-
CAM) to enhance the interpretability of the model’s
predictions [25]. Grad-CAM is a visualization technique
that highlights the regions in the input image that are
important for predictions from convolutional neural net-
works. This method uses the gradients of the output
of the final convolutional layer to produce a coarse
localization map highlighting the important regions in

the image for predicting the concept.

To implement Grad-CAM, we first import the best-
performing VGG-16 model trained on the diabetic
retinopathy dataset. We then focus on the activations and
gradients of the final convolutional layer, as this layer
captures the most complex features in the image that
are crucial for making the final decision. By computing
the gradient of the output category with respect to the
feature maps of the final convolutional layer, and then
pooling these gradients over the spatial dimensions, we
create a weighted map of the important features. This
weighted feature map is then used to create a heatmap by
performing a weighted combination of the feature maps,
followed by a rectified linear transformation. Finally,
this heatmap is superimposed on the original image
to visually represent the areas most significant for the
model’s classification decision, providing insights into
what the model is considering important in diagnosing




diabetic retinopathy. This method not only aids in ver-
ifying the model’s focus areas but also enhances trust
and understanding in its diagnostic decisions, making it
a powerful tool for medical imaging analysis.

V. RESULTS & DISCUSSION

The goal of this project was to accurately classify the
severity of diabetic retinopathy in fundus camera images
and to generate a saliency map highlighting the image
regions influencing the classification decision. We eval-
uvated model performance using cross-entropy loss and
the Area Under the Receiver Operating Characteristic
Curve (AUC-ROC). Due to significant class imbalance,
we chose AUC-ROC over accuracy as a performance
metric. Since AUC-ROC remains unaffected by skewed
class distributions, it provides a more reliable indicator
of model efficacy than accuracy. Additionally, the AUC-
ROC curve is influenced by the balance between sen-
sitivity and specificity, ensuring that the abundance of
Class 0 cases does not skew the performance metric.

Figure 2| illustrates the training and validation loss
trends. Notably, at around 10 epochs, both training and
validation losses converge to approximately 0.15. While
the training loss continues to decrease, the validation loss
begins to fluctuate after a few epochs. To prevent over-
fitting and manage computational resources efficiently,
we limited our training to 10 epochs.

displays the AUC-ROC for both training and
validation sets, which begin to plateau at about the fifth
epoch, peaking near 0.9. This indicates a 90% probability
that the model accurately distinguishes between the two
classes, confirming the model’s robust performance in as-
sessing the severity of diabetic retinopathy and achieving
our primary objective.

Our secondary objective involves visually identifying
the critical areas influencing the model’s decisions.
presents a saliency map for an image classified
as Class 0 (No Diabetic Retinopathy), where the focus
is primarily on three regions. The top left and bottom
left corners are examined for notches indicating mir-
rored images. The right-hand focus assesses the blood
vessels for abnormal vascularization and hemorrhaging.
Conversely, shows a saliency map for Class
4 (Proliferative Diabetic Retinopathy), with particular
attention to neovascularization driven by angiogenesis
and hemorrhaging. Notably, the model disregards a large
dark spot in the upper left quadrant, which we identified
as a choroidal nevus — a benign, commonly occurring
pigmented lesion unrelated to diabetic retinopathy [28]].
This discernment demonstrates the model’s capability

to distinguish between relevant and unrelated features,
which we consider satisfactory for our second objective.
However, a comprehensive assessment of the model’s
performance across various features would require ex-
tensive clinical annotation.

VI. FUTURE WORK

A key area of interest is the development of an
image segmentation system that can delineate detailed
structures within fundus images. Current limitations
stem from the precision required in labeling segmen-
tation masks, a task that demands specialized medical
expertise. Collaborating with clinicians to label these
fine masks accurately would enable us to enhance our
model’s understanding of the spatial relationships and
exact boundaries of lesions associated with diabetic
retinopathy.

Moreover, integrating segmentation with our existing
classification model could significantly refine its perfor-
mance. Segmentation masks could serve not only to vali-
date the areas of interest identified by the saliency maps
but also to quantify aspects such as the area affected
by different classes of retinopathy. This quantitative
data could be invaluable in training more sophisticated
machine learning models that consider the extent and
specific locations of retinopathy signs as factors in their
predictions.

Another promising direction involves tracking the pro-
gression of diabetic retinopathy over time. By developing
algorithms that analyze sequential fundus images of the
same patients, we can gain insights into the evolution
of the disease. This longitudinal analysis would allow
for more personalized and timely treatment decisions,
potentially slowing or even reversing the progression of
retinopathy.

Finally, integrating findings from existing literature
into our models through the use of regularization tech-
niques based on prior knowledge stands to significantly
improve model performance and reliability. By incorpo-
rating constraints derived from the extensive literature
on diabetic retinopathy and related pathologies, we can
guide the learning process of our models to adhere more
closely to clinically observed patterns. This regulariza-
tion could help mitigate the effects of overfitting and
improve generalization to new, unseen data by aligning
our model’s inferences with established medical knowl-
edge.

VII. CONCLUSION

This project has demonstrated the potential of com-
puter vision models in enhancing the diagnosis of di-
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Fig. 5: Saliency Map for an Image with Proliferative Diabetic Retinopathy

abetic retinopathy through fundus camera images. By
employing the AUC-ROC metric, which is particularly
effective in conditions of class imbalance, the model
achieved a robust ability to distinguish between different
severity levels of retinopathy. Furthermore, the genera-
tion of saliency maps provided visual confirmation of
the regions in the images that influenced the model’s
decisions, highlighting the model’s capacity to identify
clinically relevant features.

The model shows strong predictive performance and
the insights gained from the saliency maps pave the
way for more intricate explorations into image-based
diagnostic processes. Future efforts could focus on ad-
vancing towards image segmentation to gain more de-
tailed diagnostic information and on leveraging sequen-
tial image data to track the progression of retinopathy
over time. Additionally, incorporating medical expertise

into the labeling process and integrating established
clinical knowledge into machine learning models through
regularization would enhance the accuracy and reliability
of diagnostic tools.

As we continue to bridge the gap between technical
capabilities and clinical needs, the prospect of Al-driven
tools becoming a staple in diagnostics is increasingly
feasible. These tools promise not only to enhance diag-
nostic precision but also to enable earlier interventions,
potentially altering the course of diabetic retinopathy for
countless patients.
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